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We performed vertical and horizontal sandwich two-dimensional brittle fragmentation experiments. The
weighted mean fragment mass was scaled using the multiplicitym. The scaling exponent crossed over at
log10 mc.−1.4. In the smallms!mcd regime, the binomial multiplicative(BM) model was suitable and the
fragment mass distribution obeyed log-normal form. However, in the largems@mcd regime, in which a clear
power-law cumulative fragment mass distribution was observed, it was impossible to describe the scaling
exponent using the BM model. We also found that the scaling exponent of the cumulative fragment mass
distribution depended on the manner of impact(loading conditions): it was 0.5 in the vertical sandwich
experiment and approximately 1.0 in the horizontal sandwich experiment.
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The origin of the power-law distribution in brittle frag-
mentation is one of the best-examined problems in statistical
physics[1,2]. It has been examined in many recent experi-
ments and simulations[3–16]. In particular, the universality
of fragmentation transition and low-impact energy fragmen-
tation have been discussed[9,13]. Due to the success of scal-
ing theory with critical phenomena, it is natural to consider
the universality of critical behavior for various phenomena.
Kun and Herrmann discussed the possibility of percolation
universality using a point impacted granular solid model[9].
They also investigated the universality of shell fragmentation
[10]. Åström et al. proposed another universality law for
Lennard-Jones(LJ) liquid and elastic beam models[13]. Di-
mensional analyses of the exponent of the power-law distri-
bution have also been derived.[6,8,14,15]

Previously, we conducted two-dimensional(2D) brittle
fragmentation experiments in which we applied a flat impact
to one side of the specimen[17]. This consisted of a vertical
sandwich procedure using glass tubes. We showed that the
critical scaling differed from that of percolation transition,
and proposed a binomial multiplicative(BM) (or biased cas-
cade) model for critical fragmentation. The BM model is
very similar to the turbulent multifractalp model [18]. This
implies the similarity between brittle fragmentation and tur-
bulence by means of multifractality. However, the BM model
included a fitting parameter that was fixed ata=2/3, al-
though the origin of this value was not clear. When a more
realistic case was considered, the model predictions did not
fit the experimental results[19]. The model results also did
not follow the power-law fragment mass distribution; rather,
they obeyed a log-normal distribution due to the central limit
theorem.

Low-impact energy fragmentation measured in experi-
ments that involved dropping a one-dimensional(1D) glass
rod yielded log-normal distributions in the relatively low-
impact energy regime[3]. The log-normal form has also
been observed in the three-dimensional(3D) numerical re-

sults of viscoelastic crystal fragmentation[8]. A discussion
of the log-normal distribution for a fragmentation process is
found in Kolmogoloff [20]. It is not clear how the fragment
mass distribution approaches the power-law form from the
log-normal distribution. Do the fragments obey any other
distributions before they reach the power-law form? The re-
lation between the universal scaling law, the log-normal
model, and multifractality is one of the most frequently dis-
cussed topics, even in the turbulent energy cascade problem
[21]. Since the brittle fragmentation phenomenon is very
simple, it is very useful to investigate the origin of, and path
to, the power-law form.

In order to study this problem, we performed low-impact
energy fragmentation experiments. In addition to the glass
tube results we reported previously[17,19], we also analyze
the results for glass plate samples, which correspond to a
horizontal sandwich procedure.

The experimental apparatus was very simple. Samples
were sandwiched between a stainless-steel plate and a
stainless-steel stage. Then, a heavy brass weight was dropped
along guide poles. This experimental system was described
in Ref. [17]. After fragmentation, all the fragments were col-
lected and their masses were measured using an electronic
balance. We broke 25 new glass plates. Fifteen were 30
33030.1 mm3 in size, and ten were 6036030.1 mm3 in
size. We set the measurement limit for the minimum mass at
0.001 g, but only analyzed the data for fragments down to
mmin=0.01 g. Thismmin value is the same as that used in the
glass tube experiments. The glass tubes and plates corre-
sponded to vertical and horizontal sandwich procedures, re-
spectively.

Let us introduce a critical divergence of the weighted
mean fragment mass,

M2

M1mmin
, m−s, s1d

whereMk andm are written as*Electronic address: katsurag@asem.kyushu-u.ac.jp
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Mk = o
m

mknsmd, m = mmin
M0

M1
. s2d

m andnsmd denote the fragment mass and fragment number
of the massm, respectively. Note that the summation in Eq.
(2) includes the largest fragment mass. The left-hand side of
Eq. (1) also includes the factormmin

−1 , which was not consid-
ered in the previous definition ofs (Eq. 4 in Ref.[17]). This
factor is a normalization term for the weighted mean frag-
ment mass and gives a dimensionless value. It does not affect
the value of the scaling exponent. The multiplicity parameter
m was introduced by Campi as a pseudo-control-parameter to
analyze nuclear fragmentation[22]. It indicates the dimen-
sionless normalized fragment number.

The entire plot of log10fM2/ sM1mmindg vs log10 m is
shown in Fig. 1. The figure shows that the scaling crosses
over aroundslog10 mc.−1.4d. There are also two divergent
points in Fig. 1, which are likely due to experimental failure,
such as an oblique impact. However, we did not remove
these points, since we do not have clear criteria to distinguish
between success and failure. In the regimem!mc, the scal-
ing exponents can be described using the previously ob-
tained values=0.84ø1 [17]. The higher-order weighted
mean fragment mass exhibited a multiscaling nature and its
exponent agreed with the one predicted by the BM model.
Therefore, we expect the fragment mass distribution to obey
the log-normal form in this regime. Figure 2 shows an inte-
grated log-normal form of the cumulative fragment mass dis-
tribution Nsmd=em

`nsm8ddm8 for a typical low-impact energy
fragmentation(150-mm-long glass tube data with log10 m=
−2.55). The integrated log-normal function can be written as

Nsmd = AE
m

m` expf− hlogsm8/m̄dj2/2sln
2 g

m8Î2psln
2

dm8, s3d

where A, m̄, and sln are parameters, which were taken as
0.24, 10.0, and 2.0 for the solid curve in Fig. 2, respectively.
We usedm`=20 as the cutoff scale. Since good agreement

was obtained, the fragment mass distribution inm!mc fol-
lowed a log-normal distribution.

While most of the data exhibited a log-normal form, there
was a small number of fragments in the low-impact energy
regime in general[e.g., raw curves in Fig. 3(a)] so that it was
difficult to establish the form of the distribution directly.
Therefore, we measured the weighted mean fragment mass
using the momentMk of the distribution to obtain sufficient
evidence. However, we encountered problems when calculat-
ing the multiscaling exponent sk [defined as
Mk+1/ sMkmmind,m−sk] for the glass plate data due to the
large fluctuations inMk+1/ sMkmmind. We did not obtain reli-
able estimates ofsk for the glass plates, particularly in the
largek regime. Therefore, we focused only onM2/ sM1mmind
scaling here. The scaling in the largek regime is obviously
determined mainly by the largest fragment. This means that
we used mean mass statistics instead of the largest mass
statistics, in this paper.

For the glass tubes, some fragmentation results showed a
power-law distribution in the relatively largem regime[17].
In such a regime,m was close tomc, i.e., the crossover might
have already occurred(Fig. 4(b) in Ref. [17]). Due to the
dimensional restrictions of the experimental apparatus, we
could only examine the smallm regime for glass tubes.
Therefore, the clear crossover found in the glass plate frag-
mentation data has not been observed previously.

Another important characteristic is the power-law form of
the cumulative fragment mass distribution for a fully frag-
mented state. It had different exponents for the tube and plate
experiments. Figure 3 shows the cumulative fragment mass
distributions in the rangemù0.01 g for the glass plate
samples. Figures 3(a) and 3(b) give the low- and high-impact
energy regime distributions, respectively. Each curve repre-
sents a different imparted energy(dropping height of the
weight) state. The cumulative distributions of well-
fragmented events[Fig. 3(b)] have a power-law portion
Nsmd,m−st−1d with an exponentt−1 of about 1. Some dis-
tributions in Fig. 3(b) contain large fragments, so that the
scaling regions are restricted to almost one order of magni-
tude; however, most portions of the distributions followt

FIG. 1. The log of the dimensionless weighted mean fragment
massfM2/ sM1mmindg as a function of the log of the pseudo-control-
parameterm. The scaling crossed over from a log-normal to a
power-law distribution regime around log10 mc.−1.4. Whiles sat-
isfied sø1 in the smallms!mcd regime, it exceeded 1 in them
@mc regime. This implies that the BM model is unsuitable for the
largem regime.

FIG. 2. Log-normal form of the fragment mass distribution in
the low-impact energy regimeslog10 m=−2.55 datad. The sample
was a 150-mm-long glass tube. The inset shows a semilog plot of
the same distribution. The dashed line indicates an exponential-like
tail.
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−1=1. Theglass tube experiments hadt−1=0.5 [17]. This
difference between the tubes and plates indicates that the
exponentt depends on the fracturing method. The valuet
−1=1 does not concur with the value predicted by Hay-
akawa[8] and Åströmet al. [14], t−1f=sd−1d /dg=1/2 (for
d=2). They considered the propagating and branching dy-
namics of the crack(or the failure wave). Therefore, in the
horizontal sandwich fragmentation of glass plates, mecha-
nisms other than crack dynamics might determine the value
of t. Moreover, the boundary conditions are different be-
tween our horizontal sandwich experiments and the simu-

lations of Åströmet al. By contrast, Beheraet al. obtained a
value oft−1.1 in the highly fragmented state for a lateral
impact disk fragmentation simulation[11]. This value agrees
with our experiments, despite the difference in the loading
conditions. Kadono discussed the energy balance and ob-
tained the inequality 1/2,t−1,1 [6]. This inequality
range is also close to our result.

On the other hand, our distributions in the low-impact
energy regime showed the remains of large fragments and
were rather flat[Fig. 3(a)]. This behavior resembles that of
the integrated log-normal form, as described in Fig. 2. Al-
though all the curves in Figs. 3(a) and 3(b) correspond to
different imparted energy states, we tried summing those up.
As a result, summed curves are shown in the insets; these
more clearly indicate the integrated log-normal and power-
law distributions. The solid curve in the inset of Fig. 3(a) is
the same as that in Fig. 2, except for the cutoff scalem`

=3.5.
The weighted mean fragment mass scaling of the glass

plate samples only is shown in Fig. 3(c). Here, the triangles
correspond to the low-impact energy regime distributions
[Fig. 3(a)] and the circles correspond to the high-impact en-
ergy regime distributions[Fig. 3(b)]. As expected, we con-
firmed a distinct separation between the two regimes using
the weighted mean fragment mass and the multiplicity. The
value of s became largess.1.7d in the largerms@mcd re-
gime (Fig. 1). Although the BM model can be applied to
smallssø1d values, it is inappropriate for largess.1d. Fur-
thermore, other models, such as the distributed and remain-
ing cascade model, also break down for larges values[19].
The point mc indicates the distribution crossover from the
log-normal to the power-law. We cannot explain what hap-
pens in the largem regime at present. Perhaps the smallest
limit of the splitting mass might appear abovemc, similar to
an idea proposed by Matsushita and Sumida[23]. We as-
sumed that the crossover point was universal, but there ap-
pears to be a slight difference between the points shown in
Figs. 1 and 3(c). More details and direct observations of
fragmentation are necessary to understand the crossover pre-
cisely. Theoretical studies are also required. In particular, an
analysis in the vicinity ofmc would be interesting to see how
the transition occurs.

The crossover in Fig. 1 is reasonable from the viewpoint
of the limit point. The limit point (log10 m ,
log10fM2/ sM1mmindg)=s0,0d corresponds to the completely
fragmented state. In such a state, all fragments are the small-
est unit size fragments. While it is extremely difficult to
achieve such a state(i.e., fragment mass distributions exhibit
power-law in general), it can exist as an ideal limit case. If
the BM scaling stretches until log10 m=0 in Fig. 1,
log10fM2/ sM1mmindg never reaches the value 0. This is a non-
physical state. Therefore, it is natural that the crossover point
corresponds to a certain valuemc.

Åström et al. recently proposed a generic fragment mass
distribution form that was composed of a power-law portion
and an exponential portion[14]. The former originates from
the dynamics of crack branching and merging, and the latter
results from the Poisson process. Their proposed form also
applies to the low-impact energy regime. The inset in Fig. 2
depicts a semilog plot of the sameNsmd distribution that was

FIG. 3. The cumulative fragment mass distribution of the glass
plate samples in(a) the low-impact energy regime and(b) the high-
impact energy regime.(c) Scaling plot of log10fM2/ sM1mmindg vs
log10 m for all glass plate samples. The triangles correspond to the
low-impact energy cases(a), and the circles correspond to the high-
impact energy cases(b). The insets of(a) and (b) show the all
summed curves.
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explained using a log-normal distribution. It shows astraight
(i.e., exponential) tail, which suggests that the Åström model
may also be suitable. However, from the viewpoint of the
multiscaling nature of critical fragmentation, the BM model
and log-normal distribution are more plausible. Diehlet al.
obtained a similar coincidence between 2D explosive frag-
mentation simulations and the BM model[16]. They also
discussed the log-normal distribution form.

Very recently, Wittelet al. reported the results of shell
fragmentation experiments and simulations[10]. They con-
cluded that theimpactfragmentation of shells showed a con-
tinuous transition, while theexplosiveone showed an abrupt
transition. In our experiments, fragmentation seemed to oc-
cur suddenly. We could not obtain samples that only had
visible macrocracks, but did not split. A small amount of
imparted energy cannot make brittle solids cleave. This
might imply a “latent-heat-like behavior.” That is, the begin-
ning of fragmentation requires a finite “latent energy” to gen-
erate macrocracks. The splitting occurs abruptly and it pro-
ceeds according to the BM model statistics. We can observe
critical scaling in the rangem.0. However, we cannot dis-
cuss the scaling in the rangem,0, since it corresponds to
the unfragmented state. The fragmentation transition of open
2D objects involved in flat impacts is not yet understood
very well in terms of the phase transition, and this is still an
open question. Conversely, the transition from the log-
normal to the power-law is characterized by the crossover of

the weighted mean fragment mass scaling, as demonstrated
above.

Wittel et al. also revealed that the scaling exponentt is
dependent on the loading conditions in numerical simula-
tions [10]. While this was not consistent with their experi-
mental results, it concurs with our findings qualitatively if
we consider the vertical and horizontal sandwich procedures
to correspond to impact and explosive fragmentation pro-
cesses, respectively. Quantitatively, their values oft differed
from ours slightly. This might result from the difference be-
tween an open 2D sample and a closed-shell sample.

In summary, we examined 2D brittle fragmentation using
experiments with glass tubes and glass plates. The exponent
t had different values depending on the loading conditions,
which consisted of either a horizontal or vertical sandwich
impact to the 2D surface. Contrarily, the normalized
weighted mean fragment mass scaling was universal and had
a crossover point at which the fragment mass distribution
changed from a log-normal to a power-law type. The results
were consistent with other recent experiments and numerical
simulations, but included unique experimental findings about
the relatively largem weighted mean fragment mass scaling.
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